Gabatarwa ga Matsalolin Multi-Armed Bandit
Yawancin aikace-aikace na ainihi suna buƙatar matsalolin yanke shawara na bi da bi inda wakili dole ne ya zaɓi mafi kyawun aiki tsakanin madadin da yawa. Misalan irin waɗannan aikace-aikacen sun haɗa da gwaje-gwajen asibiti, tsarin ba da shawara, da gano abubuwan da ba su dace ba. A wasu lokuta, bayanan bi ko mahallin yana haɗe da kowane aiki (misali, bayanan martaba), kuma martani, ko lada, yana iyakance ga zaɓin da aka zaɓa. Misali, a cikin gwaje-gwajen asibiti, mahallin shine rikodin likitanci na majiyyaci (misali, yanayin lafiya, tarihin iyali, da sauransu), ayyukan sun dace da zaɓin magani da aka kwatanta, kuma lada yana wakiltar sakamakon maganin da aka tsara (misali, nasara ko gazawa). Wani muhimmin al'amari da ke shafar nasara na dogon lokaci a cikin irin waɗannan yanayi shine nemo daidaito mai kyau tsakanin bincike (misali, gwada sabon magani) da amfani (zaɓen sanannen magani har zuwa yau).
Wannan cinikin da ke tattare da bincike da amfani yana wanzuwa a yawancin matsalolin yanke shawara na bi da bi kuma a al'ada an tsara shi azaman matsalar bandit, wanda ke bayyana kamar haka: Idan aka ba da K yiwuwar ayyuka, ko "hannaye", kowanne yana da alaƙa da ƙayyadaddun rarraba lada amma ba a sani ba, a kowane juzu'i, wakili yana zaɓar hannu don yin wasa kuma yana karɓar lada, wanda aka zana daga rarraba yuwuwar hannun daban. Aikin wakili shine koyon zaɓar ayyukansa ta yadda za a iya ƙara lada akan lokaci.
Muhimman Fahimta
- Dilemma na bincike da amfani yana da mahimmanci ga matsalolin multi-armed bandit
- Algorithms na Bandit suna ba da tsarin lissafi don daidaita bincike da amfani
- Contextual bandits sun haɗa da ƙarin bayani don inganta yanke shawara
- Aikace-aikace na ainihi sun ƙunshi yankuna da yawa ciki har da kiwon lafiya, kasuwanci ta kan layi, da tsaro na kan layi
Tsarin Matsalar Multi-Armed Bandit
An ayyana matsala na al'ada na multi-armed bandit (MAB) ta K hannaye, kowanne yana da rarraba lada da ba a sani ba. A kowane lokaci t, wakili yana zaɓar hannu a_t ∈ {1, 2, ..., K} kuma yana karɓar lada r_t wanda aka zana daga rarraba zaɓin hannun. Manufar ita ce haɓaka lada mai tarawa akan T zagaye, ko daidai, rage nadama, wanda shine bambanci tsakanin lada mai tarawa na mafi kyawun hannu da lada mai tarawa na zaɓin hannaye.
Lura cewa dole ne wakili ya gwada hannaye daban-daban don koyon lada (watau bincika ribar), kuma ya yi amfani da wannan bayanin da aka koya don karɓar mafi kyawun riba (amfani da ribar da aka koya). Akwai ciniki na halitta tsakanin bincike da amfani. Misali, gwada kowane hannu sau ɗaya, sannan kuna kunna mafi kyawun daga cikinsu. Wannan hanyar sau da yawa tana iya haifar da mafi ƙarancin mafita lokacin da lada na hannaye ba su da tabbas.
Tsarin Nadama
Nadama = Σ[μ* - μ_{a_t}] inda μ* shine lada da ake tsammani na mafi kyawun hannu
Ma'auni na Gama gari
Lada mai tarawa, nadama mai sauƙi, da nadama na Bayesian sune mahimman ma'auni na aiki
An gabatar da mafita daban-daban don wannan matsala, dangane da tsari na stochastic da tsarin Bayesian; duk da haka, waɗannan hanyoyin ba su yi la'akari da mahallin ko bayanan bi da ke akwai ga wakili ba.
Contextual Multi-Armed Bandits
Wani sigar MAB mai amfani musamman ita ce contextual multi-arm bandit (CMAB), ko kuma kawai contextual bandit, inda a kowane zagaye, kafin zaɓen hannu, wakili yana lura da vector mahallin x_t wanda zai iya rinjayar rarraba lada na hannaye. Mahallin na iya haɗawa da fasalin mai amfani, masu canjin muhalli, ko kowane bayanin gefe mai dacewa. Manufar ta kasance don haɓaka lada mai tarawa, amma yanzu manufar na iya dogara da mahallin da aka lura.
Contextual bandits sun sami kulawa sosai saboda dacewarsu a cikin tsarin ba da shawara na keɓance, inda mahallin yawanci ke wakiltar halayen mai amfani, kuma hannaye sun dace da abubuwa daban-daban ko abun ciki don ba da shawara. Lada na iya zama danna, siye, ko kowane nau'i na haɗin gwiwa.
An ƙirƙira algorithms da yawa don contextual bandits, ciki har da LinUCB, wanda ke ɗaukar alaƙar layi tsakanin mahallin da lada da ake tsammani na kowane hannu, da samfurin Thompson tare da samfuran layi. Waɗannan algorithms sun nuna ƙwararrun aiki na zahiri a cikin aikace-aikace daban-daban.
Aikace-aikace na Ainihi na Multi-Armed Bandits
Gwaje-gwajen Asibiti
A cikin gwaje-gwajen asibiti, tsarin multi-armed bandit yana ba da hanyar da'a don rarraba magani. Mahallin ya haɗa da bayanan kula da lafiya na majiyyaci, bayanan alƙaluma, da alamomin kwayoyin halitta. Hannaye suna wakiltar zaɓin magani daban-daban, kuma lada yana nuna nasarar magani ko gazawa. Algorithms na Bandit na iya rarraba ƙarin marasa lafiya zuwa magunguna masu ban sha'awa yayin da har yanzu ana bincika madadin, wanda zai iya haifar da mafi kyawun sakamakon majiyyaci da gwaje-gwaje masu inganci.
Tsarin Ba da Shawara
Tsarin ba da shawara yana wakiltar ɗaya daga cikin mafi nasarar aikace-aikace na algorithms na bandit. Manyan dandamali suna amfani da contextual bandits don keɓance abun ciki, samfura, da shawarwarin talla. Bangaren bincike yana ba da damar tsarin gano abubuwan da mai amfani ya fi so don sabbin abubuwa, yayin da amfani yana amfani da sanannun abubuwan da ake so don haɓaka haɗin gwiwar mai amfani. Wannan hanyar tana magance matsalar farawa sanyi don sabbin abubuwa kuma tana daidaitawa da canje-canjen sha'awar mai amfani akan lokaci.
Gano Abubuwan da ba su dace ba
A cikin tsarin gano abubuwan da ba su dace ba, algorithms na Bandit na iya inganta rarraba ƙayyadaddun albarkatun dubawa. Mahallin na iya haɗawa da ma'aunin tsarin, tsarin zirga-zirgar sadarwa, ko fasalin halayen mai amfani. Hannaye suna wakiltar dabarun dubawa daban-daban ko samfurin gano abin da ba daidai ba, kuma lada yana nuna ko an gano abin da ba daidai ba na gaskiya. Wannan hanyar tana ba da damar rarraba albarkatu mai daidaitawa ga mafi kyawun hanyoyin ganowa.
Sauran Aikace-aikace
Ƙarin aikace-aikace sun haɗa da ingantaccen fayil a cikin kuɗi, gwajin A/B a cikin haɓaka gidan yanar gizo, rarraba albarkatun a cikin kwamfutar girgije, da fasahar ilimi don koyo mai daidaitawa. Sassauƙan tsarin bandit yana sa ya dace da kowane yanayi da ke buƙatar yanke shawara na bi da bi a ƙarƙashin rashin tabbas tare da ƙayyadaddun martani.
Algorithms da Hanyoyin Bandit
Bandits na Stochastic
Stochastic bandits suna ɗauka cewa lada na kowane hannu an zana su ne daban daga ƙayyadaddun rarraba. Manyan algorithms sun haɗa da ε-greedy, wanda ke zaɓar mafi kyawun hannu tare da yuwuwar 1-ε da hannu bazuwar tare da yuwuwar ε; Upper Confidence Bound (UCB) algorithms, waɗanda ke zaɓar hannaye dangane da kyakkyawan kiyasin yuwuwar su; da samfurin Thompson, wanda ke amfani da rarraba Bayesian na baya don daidaita bincike da amfani.
Bandits na Adversarial
Adversarial bandits ba sa yin zato na ƙididdiga game da samar da lada, suna ɗaukar su azaman jerin abubuwa da wani abokin gaba zai iya zaɓa. Algorithm na Exp3 da bambance-bambancensa an tsara su don wannan saitin, ta amfani da tsarin ma'auni na exponential don cimma nadama mai ƙasa da layi a kan kowane jerin lada.
Bandits na Bayesian
Bayesian bandits suna kiyaye rarraba yuwuwar akan yiwuwar rarraba lada na hannaye. Samfurin Thompson shine mafi shahararriyar hanyar Bayesian, wanda ke samfurin daga rarraba na baya na sigogin lada na kowane hannu kuma ya zaɓi hannun tare da mafi girman ƙimar samfurin. Wannan yana daidaita bincike da amfani da kyau gwargwadon rashin tabbas na yanzu.
Algorithms na Contextual Bandit
Algorithms na Contextual bandit sun faɗaɗa waɗannan hanyoyin don haɗa bayanan mahallin. LinUCB yana ɗaukar ayyukan lada na layi kuma yana kiyaye ellipsoids na amincewa a kewayen kiyasin sigogi. Neural bandits suna amfani da cibiyoyin sadarwar jijiya masu zurfi don ƙirƙira rikitattun alaƙa tsakanin mahallin da lada. Waɗannan algorithms sun nuna ƙwararrun aiki a cikin manyan aikace-aikace masu girma mai girma.
Trends na Yanzu da Ra'ayoyin Gaba
Fagen multi-armed bandits yana fuskantar farfaɗowar, tare da sabbin sigogi na matsala da algorithms waɗanda aka ƙaddamar da su ta hanyar aikace-aikace daban-daban na ainihi, ban da matsala na al'ada na bandit. Muhimman abubuwan da suka shafi yanzu sun haɗa da haɗa bandits tare da koyo mai zurfi, wanda ke haifar da ƙarin ƙarfin algorithms na contextual bandit masu iya sarrafa rikitattun mahalli masu girma.
Wani muhimmin al'amari shine haɓaka algorithms na bandit don wuraren da ba na tsaye ba, inda rarraba lada ke canzawa akan lokaci. Wannan yana da mahimmanci ga yawancin aikace-aikace na ainihi inda abubuwan da ake so na mai amfani, yanayin kasuwa, ko halayen tsarin ke haɓaka. Algorithms irin su sliding-window UCB da dabarun rangwame suna magance wannan ƙalubale.
Akwai ƙaruwar sha'awar haɗin gwiwa da rarraba bandits, inda masu wakili da yawa ke koyo lokaci guda kuma suna iya raba bayanai. Wannan yana dacewa da saitunan koyo na tarayya inda keɓantaccen bayanai ke da mahimmanci. Bugu da ƙari, bandits tare da ƙuntatawa da la'akari da aminci suna samun hankali, musamman don aikace-aikace a cikin kiwon lafiya da kuɗi inda dole ne a guji wasu ayyuka.
Hanyoyin bincike na gaba sun haɗa da haɓaka mafi ingantaccen algorithms don manyan wuraren aiki, haɗa bayanan tsarin game da sararin aiki, da inganta fahimtar ka'idar algorithms na bandit mai zurfi. Haɗin bandits tare da ƙididdigewa yana wakiltar wata hanya mai ban sha'awa, yana ba da damar ingantaccen yanke shawara lokacin da tsangwami na iya yin tasiri na dogon lokaci.
Ƙarshe
Multi-armed bandits suna ba da ingantaccen tsari don yanke shawara na bi da bi a ƙarƙashin rashin tabbas tare da ƙayyadaddun martani. Muhimmin ciniki na bincike da amfani yana bayyana a cikin aikace-aikace da yawa na ainihi, daga gwaje-gwajen asibiti zuwa tsarin ba da shawara. Ƙaddamar da contextual bandit ya tabbatar da mahimmanci musamman don tsarin keɓance waɗanda suka dace da halayen mutum.
Wannan binciken ya ba da cikakken bayyani na manyan ci gaba a cikin multi-armed bandits, tare da mai da hankali kan aikace-aikace na ainihi. Mun bincika tsarin matsala, manyan algorithms, da yankuna daban-daban na aikace-aikace. Fagen yana ci gaba da haɓaka cikin sauri, tare da sabbin algorithms suna magance ƙalubale kamar rashin tsayayyi, manyan wuraren aiki, da ƙuntatawa na aminci.
Yayin da algorithms na bandit suka zama masu ƙware kuma ana amfani da su ga matsaloli masu rikitarwa, za su ci gaba da taka muhimmiyar rawa wajen inganta yanke shawara a fannoni daban-daban. Binciken da ake ci gaba da yi a wannan yanki yana alƙawarin samar da ƙarin ingantattun algorithms da faɗaɗa aikace-aikace a nan gaba.