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Abstract

A fundamental conflict of many proof-of-work systems is

that they want to achieve inclusiveness and security at the

same time. We analyze and resolve this conflict with a theory

of proof-of-work quorums, which enables a new bridge be-

tween Byzantine and Nakamoto consensus. The theory yields

stochastic uniqueness of quorums as a function of a secu-

rity parameter. We employ the theory in HotPoW, a scalable

permissionless distributed log protocol that supports finality

based on the pipelined three-phase commit previously pre-

sented for HotStuff [65]. We evaluate HotPoW and variants

with adversarial modifications by simulation. Results show

that the protocol can tolerate network latency, churn, and tar-

geted attacks on consistency and liveness with a small storage

overhead compared to plain Nakamoto consensus and less

complexity than protocols that rely on sidechains for finality.

1 Introduction

Bitcoin surprised scholars in distributed systems, as well as

in security [11]. Authors have called the new composition of

known concepts a “sweet spot” [64] in the design space for

protocols, and praised the complex way the components are

put together as a “true leap of insight” [49] of Nakamoto [48].

Likely the most intriguing part is the way Bitcoin uses proof-

of-work puzzles to secure a distributed log.

The role of proof-of-work in Nakamoto consensus can

be contemplated in several ways. First and most intuitively,

the computational puzzles can be interpreted as a rate limit

on new identities, which discourage Sybil attacks [19] in a

lottery for blocks and new coins. Second, proof-of-work can

be conceived as a game-proof variant of a probabilistic back-

off mechanism, as used in media access control in computer

networks. It reduces the risk of collisions when many nodes

concurrently seek write access to a shared medium, the ledger.

Proof-of-work has been formalized in cryptographic security

models of Nakamoto consensus [27, 55]. However, we are not

aware of work pointing out the fundamental conflict between

inclusiveness and security inherent to the way proof-of-work

is used in the known distributed log protocols.

This conflict precludes reliable and fast commits. Arguably,

it is the reason why practical protocols trade finality for even-

tual consistency. But the lack of finality limits the applicability

for high-value transactions [10, 29], a potential show-stopper

discussed even beyond the technical community [4, 12].

We tackle this conflict directly, leading to a theory of proof-

of-work quorums, which enables new ways of using proof-of-

work in permissionless distributed log protocols. We propose

one such protocol, HotPoW, demonstrating that finality with

reliable and short time to commit is possible. Specifically,

we do not rely on sidechains, a tool used in the literature to

stack Byzantine on top of Nakamoto consensus [41, 53, 54].

Sidechains can add finality and increase throughput at the

price of increased complexity, overhead, and tricky issues in

the synchronization between layers [23, 41].

The proposed protocol is inspired by two recent break-

throughs: Bobtail [9] and HotStuff [65]. The former optimizes

stochastic properties of the block delay in Nakamoto consen-

sus. The latter adapts principles of Byzantine fault tolerance

to blockchains in a clever way. It has received attention after

Facebook’s announcement to use it in LibraBFT [8].

We make the following contributions:

1. We draw attention to a fundamental conflict between

inclusiveness and security in Nakamoto consensus and

propose a principled resolution (Section 2).

2. We develop a theory of proof-of-work quorums where

quorums are formed over votes generated by stochastic

processes. We show that sufficiently large quorums are

practically unique (Section 3).

3. We propose HotPoW, a protocol that finds consensus

over a distributed log without requiring pre-defined iden-

tities. HotPoW scales at least as well as practical block-

chain protocols and much better than Byzantine fault

tolerance protocols. It relies on proof-of-work, but, un-

like deployed systems using the longest chain rule, our
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Figure 1: Probability densities of exponential (left) and gamma distributions (right) as functions over time for a 2/3 majority and

a 1/3 minority (with flipped y-axis). The area under each curve represents the odds of winning a race.

construction supports a three-phase commit logic. State

updates (transactions) are final after a predictable amount

of time, and the probability of inconsistency is bounded

according to our theory (Section 4).

4. We simulate executions of HotPoW as well as of variants

with adversarial modifications. The results show that the

protocol can tolerate network latency, churn, and targeted

attacks on consistency and liveness at small overhead

compared to the best deployed systems (Section 5).

Section 6 compares HotPoW to related works and discusses

its limitations. Section 7 concludes. For replicability and

future research, we make the protocol implementation and

the simulation code available online.1

2 Intuition

The key conflict between inclusiveness and security faced by

cryptocurrencies is as follows: minorities should be encour-

aged to participate (inclusiveness), but they should not be

able to make decisions alone (security). Nakamoto consensus

achieves inclusiveness by sacrificing security for an uncertain

period of time (eventual consistency). This becomes problem-

atic when irreversible real-world actions are taken based on

unsettled transactions in the distributed log (double spending).

A short and reliable time to commit would mitigate this risk.

Recall that Nakamoto consensus prioritizes inclusiveness

by using a puzzle as gatekeeper to participation. The protocol

specifies a repeated race for the first puzzle solution. Each win-

ner proposes a state update and receives some reward. Most

cryptocurrencies use puzzles—moderately hard functions—

for which iterative trial and error is the best known solving

algorithm. Such puzzles imply exponentially distributed solv-

ing time. Figure 1a shows the probability distributions for the

solving times of a 2/3 majority of solving power compared

to a 1/3 minority. The expected time of the end of the race

is marked with t̂1 (in Bitcoin t̂1 ≈ 10 minutes). Consequently,

1https://github.com/pkel/hotpow/tree/arxiv_v3

the area under each curve represents the odds of winning the

race. Observe that the minority has a fair chance. This makes

the protocol inclusive, but also implies that minorities have

a significant chance of directly writing state updates. For im-

proved security, we would prefer a distribution such that the

minority’s area under the curve is small (ideally negligible),

as displayed in Figure 1b.

Since the puzzle of Nakamoto consensus behaves like

in Figure 1a, a single state update is not reliable. As a re-

sult, users are recommended to wait for multiple consecutive

blocks before acting upon a payment. The time needed for se-

quentially solving k exponential puzzles is gamma distributed

with shape parameter k. In fact, Figure 1b shows the gamma

distribution for k = 6. Note the significant gap between mi-

nority and majority: it is unlikely that a minority can generate

a sequence of 6 state updates before the majority does so. In

this sense, multiple puzzle solutions qualify a majority, while

a single one does not.

In Nakamoto consensus, security comes at the price of

waiting for multiple solutions. Bitcoin’s convention of k = 6

implies an expected waiting time of t̂2 ≈ 60 minutes, which is

arguably too slow for many applications. Besides, Nakamoto

consensus does not give a rationale on how to choose k.

A key idea for resolving this conflict is to break the one-to-

one relationship between puzzle solutions and blocks. Instead

of requiring a single 10 minute puzzle per block, HotPoW asks

for k easier puzzles each expected to take 10/k minutes. In

other words, HotPoW achieves security by appending puzzle

solutions in parallel rather than sequentially, as illustrated

in Figure 2. Since the puzzles are independent, we end up

with the same block rate but k times the number of solutions.

The expected computational effort stays the same, but we

accumulate a qualifying number of solutions for every block.

This means we get the shape of Figure 1b much faster: t̂2 ≈ t̂1.

For a principled construction of HotPoW, we reduce the

payload “authenticated” [5] by proof-of-work to a minimum:

1. a reference to a recent point in time (e. g., a hash link to

the last seen block)

2
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Figure 2: Sequential puzzles in Nakamoto consensus imply

exponentially distributed block delays. Multiple smaller puz-

zles in parallel lead to a gamma distribution for each block.

2. a reference to an identity (public key or commitment)

A triple of a puzzle solution and these two references forms

a verifiable ephemeral identity. The puzzle solution binds

resources in order to prevent Sybil attacks, the reference in

time ensures freshness, and the identifier enables authorized

actions, such as claiming a reward.

The main difference between proof-of-work systems and

the well-studied class of Byzantine fault tolerant (BFT) sys-

tems [14, 20, 44] is that the former do not rely on external

identification of the participating nodes. Inspired by the early

work of Aspnes et al. [3], HotPoW uses proof-of-work to boot-

strap ephemeral identities and plugs them into HotStuff [65],

a state of the art blockchain-based BFT system. In HotStuff,

each block carries a certificate about a qualified majority of

nodes (quorum) confirming the last seen block. HotStuff’s

proof of finality is based on the qualifying properties of each

quorum. This motivates us to explore whether and to what ex-

tent a set of proof-of-work solutions can qualify a majority. In

Section 3, we will show that qualifying majorities are possible

within a single block. This allows us to transfer HotStuff’s

finality to the permissionless setting.

The recurse to HotStuff enables us to fix the number of

blocks to wait before accepting a state update as final at the

necessary number of phases to commit, thereby resolving a

drawback of Nakamoto consensus. As illustrated in Figure 3,

HotStuff uses a three-phase commit, which can be pipelined

for subsequent state updates on a blockchain. In a nutshell, the

first phase locks a single proposal, the second phase confirms

majority uptake of this lock, and the third phase ensures that

the knowledge of this knowledge is propagated. We refer

to [65] for the rationales and failure modes. In this sense,

HotPoW parallelizes not only puzzle solutions but also the

phases of the commit logic.

Another advantage of the gamma distribution per block

is a reduction in the variance of block delays compared to

the exponential distribution implied by the puzzle. While

Phase 1

Phase 2

Phase 3

co
m

m
it

Figure 3: Pipelined three-phase commit on a blockchain in

HotStuff and HotPoW.

the commit pipeline gives us finality after three blocks, the

reduced variance translates this into a reliable time to commit.

The theory in the following section shows formally how all

this is related to the quorum size, HotPoW’s new security

parameter.

3 Proof-of-Work Quorums

Quorums are central to the design and analysis of BFT proto-

cols. The typical Byzantine setting assumes a set of n= 3 f +1

identified nodes, of which at most f deviate from the protocol.

A set of 2 f +1 votes for the same value is called a quorum.

If correct nodes vote at most once, quorums imply a majority

decision and thus are unique. The uniqueness may be violated

in two situations.

BFT-1 More than n nodes vote.

BFT-2 More than f nodes vote more than once.

Practical systems avoid BFT-1 using preset identities for all

nodes and rule out BFT-2 by assumption.

Proof-of-work enables systems where agents can join and

leave at any time without obtaining permission from an iden-

tity provider or gatekeeper [48]. This difference is often im-

plied in the terms “permissioned” and “permissionless”. In

the permissionless case one must distinguish between agents

and nodes. Agents are entities participating in a distributed

system. An agent can operate any number of nodes. Colluding

parties are interpreted as a single agent.

We introduce the notion proof-of-work quorum for a set of

votes where each vote requires a solution to a proof-of-work

puzzle. Since the puzzle solving time is probabilistic, the

uniqueness of quorums cannot be absolute. In contrast to the

Byzantine setting, we have to consider three failure modes:

PoW-1 The total compute power of the network is higher

than assumed.

PoW-2 The adversary controls more than the assumed frac-

tion of compute power.

PoW-3 A random bad realization happens.
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The failure modes PoW-1 and PoW-2 correspond to the

Byzantine failure modes BFT-1 and BFT-2. Our goal is to

understand the new failure mode PoW-3 and how it affects

the potential ambiguity (violation of uniqueness) of quorums.

Definition 1 (Proof-of-work process). A proof-of-work pro-

cess is a stochastic count process where each event assigns

one ability to vote (ATV) to one agent. Each ATV can be used

by the agent it is assigned to, to vote once for one value.

We adopt the notion of a quorum from the BFT litera-

ture [45, 65] except that we will apply it to votes from ATVs

rather than identified nodes.

Definition 2 (k-quorum). A set of k votes for the same value x

is called a k-quorum for x.

Observing a k-quorum implies that at least k ATVs have

been used, hence the proof-of-work process must have as-

signed at least k ATVs. This connects to time.

Definition 3 (Optimistic quorum time). The time at which

the proof-of-work process assigns the k-th ATV is called

optimistic k-quorum time. For a proof-of-work process P and

quorum size k it is formally defined by the random variable

TP,k := inf{t ∈ R≥0 | P(t)≥ k} .

TP,k is the earliest point in time at which a k-quorum is

feasible. A k-quorum is only possible at exactly TP,k, if all

assigned ATVs are used to vote for the same value.

A quorum for x is ambiguous if there is another quorum

for y 6= x. Since each ATV can be used for at most one value,

ambiguous k-quorums are only possible when the proof-of-

work process has assigned at least 2k ATVs.

Definition 4 (Probability of ambiguity). For a proof-of-work

process P and quorum size k we define the probability of

ambiguity (POA) as

poaP,k(t) := Pr
[

P(t)≥ 2k
]

.

For puzzles where the best known solving algorithm is in-

dependent trial and error, the stochastic process is instantiated

by the Poisson process Pλ. This is because if each puzzle

solution generates one ATV, the time between consecutive

ATVs is exponentially distributed with rate λ.

Lemma 1. The POA for the Poisson process Pλ is given by

poaPλ,k
(t) = 1− e−λt

2k−1

∑
i=0

(λt)i

i!
.

Proof. See Appendix A.

Lemma 2. The optimistic k-quorum time for the Poisson

process is Erlang distributed with shape parameter k and rate

parameter λ, in short

TPλ,k ∼ Erlang(k,λ) .
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Figure 4: The density of the distribution of the optimistic

k-quorum time based on Pλ with rate λ = k/10 (minutes).
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Figure 5: The probability of ambiguity as a function of time

for quorum sizes k = 1,2, and 16 and λ = k/10 (minutes).

Proof. See Appendix A.

Corollary 1. The expected optimistic k-quorum time for the

Poisson process is

t̄λ,k := Ev
[

TPλ,k

]

= k/λ .

Proof. The statement follows from Lemma 2 and the defini-

tion of the Erlang distribution [63, p. 146].

Figure 4 illustrates the distribution of the optimistic k-

quorum time for k ∈ {1,2,16} based on the Poisson process.

In order to compare quorum sizes greater than one to an ideal

Bitcoin (k = 1, t̄λ,k = 10 minutes), we choose λ = k/10.

Figure 5 shows the POA for different quorum sizes as

a function of time. Again, we adjust the rate such that the

expected optimistic k-quorum time is 10 minutes. Observe

that the POA increases over time as the number of ATVs

grows. More importantly, the POA at the expected optimistic

quorum time decreases in the quorum size k.

In order to isolate the effect of k, we evaluate the POA at

fixed time t̄λ,k, which lends itself to a closed form.

Corollary 2. For the Poisson process, the POA at expected

optimistic k-quorum time is given by

poaPλ,k
(t̄λ,k) = 1− e−k

2k−1

∑
i=0

ki

i!
.

Proof. By inserting Corollary 1 into Lemma 1.
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Observe that the POA at expected optimistic quorum time

is independent of λ. This is useful as λ may measure the total

compute capacity in proof-of-work networks, which is not

necessarily known to each agent.

Since ambiguity causes failure, and the probability of am-

biguity vanishes as k grows, k becomes a security parameter.

In order to relate it to other security parameters, such as the

key size, we adopt the common definition of negligibility

from cryptography (i. e., asymptotic decline faster than any

polynomial) and state the following theorem.

Theorem 1. For the Poisson process, the probability of ambi-

guity at the expected quorum time is negligible in the quorum

size k.

Proof. See Appendix A.

Remark (Validation on Bitcoin). For Bitcoin parameters

(k = 1,λ = 0.1), the POA at t̄λ,k is p = 0.2642. This part

of the theory can be validated on historical data. We esti-

mate the expected block delay by averaging the differences

between consecutive block time stamps over 2017–2018.2

The estimated average block delay is t̂ = 9.52 minutes. The

ratio of cases with more than two blocks arriving within t̂ is

p̂ = 0.2606. This estimate should be slightly below p because

our historic data does not contain orphaned blocks. Since

p≈ p̂, we conclude that the theory applies to Bitcoin.

The implication of this theory for protocol design is that

larger quorums reduce the probability of ambiguity. The

(close to) exponential decay makes it conceivable to choose

parameters such that quorums are practically unique. This al-

lows us to use a notion of quorum uniqueness with ephemeral

identities generated by proof-of-work.

4 HotPoW

Now we specify HotPoW, a distributed log protocol secured

by a proof-of-work process (Def. 1) and k-quorums (Def. 2).

We present HotPoW using pseudocode and a mixture of

event-driven and imperative programming. A less ambiguous

implementation in OCaml is provided online.3

4.1 Prerequisites

We assume interfaces to the network and application layers

(Fig. 6), and the availability of cryptographic primitives.

4.1.1 Broadcast Network The proposed protocol requires

a (potentially unreliable) network broadcast. We abstract from

the exact implementation and assume that scheduling an event

〈 send | m 〉 results in the message m being sent to (most of)

2We choose this time range because the block time stamps were less

accurate in the more distant past as the data field was used for other purposes.
3https://github.com/pkel/hotpow/tree/arxiv_v3

Work Broadcast network

HotPoW

Application

CHECKUPDATE PROPOSEUPDATE APPLYUPDATE

〈 atv | . 〉 〈 send | . 〉 〈 receive | . 〉

Figure 6: Interaction between the protocol (HotPoW), the ap-

plication, the proof-of-work process, and the network. Arrows

denote information flows and not necessarily call directions.

the other HotPoW nodes. On the receiving side, the imple-

mentation delivers message m′ by scheduling 〈 receive | m′ 〉.

4.1.2 Application HotPoW implements a distributed log

which may serve as a base for different applications [1, 43,

60]. For example, a simple cryptocurrency could append lists

of transactions which jointly form a ledger. More advanced

applications could add scalability layers that only record key

decisions in the distributed log while handling other state

updates separately [23, 41, 54].

We abstract from the application logic using three proce-

dures HotPoW can call. CHECKUPDATE takes an application

state and a state update as arguments and returns true if the

state update is valid. APPLYUPDATE takes an application state

and a state update and returns an updated state. PROPOSE-

UPDATE takes an application state and returns a valid state

update. We are agnostic about direct access of the application

to the broadcast network. For example, cryptocurrencies share

transactions provisionally before they are logged in blocks.

4.1.3 Cryptography HotPoW uses cryptographic hash

functions for the hash-linked list and the proof-of-work pro-

cess. We separate these two concerns and use two differ-

ent hash functions, Hlist and Hpow. While it is sufficient

that Hlist is cryptographically secure, HotPoW requires the

same stronger assumptions for Hpow as Bitcoin [1]. Since

this difference is not central, the reader can safely assume

Hlist = Hpow = SHA3.

HotPoW also requires a digital signature scheme [39,

Def. 12.1, p. 442]. We assume a secure implementation

is given by the three procedures GENERATEKEYPAIR,

CHECKSIGNATURE, and SIGN. Every node holds an asym-

metric key pair (me, secret).

4.2 Protocol

4.2.1 Local Block Store HotPoW nodes maintain a local

tree of hash-linked blocks and a reference to the preferred

chain (head). They store blocks together with the associated

5
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application state, the block height, and a set of corresponding

votes (see Listing 4.1). The block storage is indexed by Hlist.

Listing 4.1 Local Block Store

1: procedure STORE(block B)

2: h←Hlist(B)
3: if h 6∈ blocks then

4: parent← blocks[B.parent]

5: blocks[h].parent← parent

6: blocks[h].state← APPLYUPDATE(parent.state, B.payload)

7: blocks[h].height← parent.height + 1

8: blocks[h].votes← /0
9: blocks[h].block← B

10: UPDATEHEAD(h)

4.2.2 Votes As mentioned in Section 2, a vote in HotPoW

is a triple (r, p,s), where r is a reference to a previous block,

p is the public key of the voter, and s is a puzzle solution. A

vote (r, p,s) is valid if Hpow(r, p,s)≤ tv, where tv denotes the

proof-of-work threshold and represents HotPoW’s difficulty

parameter. HotPoW nodes maintain a set of valid votes for

each block. The procedure COLLECT (Listing 4.2) adds a valid

vote (r, p,s) to the block referenced by r and, if necessary,

updates the preferred chain (see Sect. 4.2.9 below).

Listing 4.2 Collection of Votes

11: procedure COLLECT(r, p,s)

12: if Hpow(r, p,s)≤ tv then

13: blocks[r].votes← blocks[r].votes ∪{(p, s)}
14: UPDATEHEAD(r)

4.2.3 Quorums As defined in Section 3, a k-quorum is a set

of k votes for the same reference. We represent such quorums

as lists. Since the reference is the same for all votes, we omit it

from the list. A list L = {(pi,si)} represents a valid k-quorum

for r, if the following conditions hold:

1. |L|= k

2. ∀1≤ i≤ k : Hpow(r, pi,si)≤ tv

3. ∀1≤ i < k : Hpow(r, pi,si)≤Hpow(r, pi+1,si+1)

The first condition enforces the quorum size. The second

condition ensures that all votes are valid. The third condition

imposes a canonical order which we use for leader election.

We intentionally allow single nodes providing multiple votes.

Sibyl attacks are mitigated by the scarcity of votes.

4.2.4 Leader Election A quorum can only be formed at

optimistic quorum time (Def. 3) if all nodes vote for the same

block. We facilitate coordination by electing a leader who

is responsible for proposing a new block. This election is

based on the proof-of-work quorum: the leader is identified

by the smallest vote. According to Section 4.2.3 Condition 3,

this vote is also the first element of the quorum. Leaders

authenticate their proposals for the next block using SIGN and

their private key. Everyone verifies proposals with the first

public key in the quorum.

4.2.5 Blockchain The global data structure of the protocol

is a hash-linked list of blocks. Each block consists of a hash

reference to its predecessor (parent), a proof-of-work quorum

for this predecessor, a payload, and a proof of leadership

(signature). The references to parent blocks are established

by the collision-resistant hash function Hlist. The payload is

a state update to the application implemented on top of the

distributed log (see Sect. 4.1.2).

With quorums, leader election, and state updates defined,

we are in the position to present HotPoW’s block validity rule

in Listing 4.3. The loop iterates over the quorum, counts the

votes, verifies them, and checks their canonical order. The

boolean conjunction in line 22 verifies the remaining condi-

tion of the quorum, leadership, and the validity of the proposed

state update.

Listing 4.3 Block Validity

15: procedure VALIDBLOCK(block B)

16: (c,h)← (0,0)
17: for all (p,s) in B.quorum do

18: h′←Hpow(B.parent, p,s) ⊲ predecessor!

19: if h′ > tv then return false ⊲ quorum condition 2, Sect. 4.2.3

20: if h′ < h then return false ⊲ quorum condition 3, Sect. 4.2.3

21: (c,h)← (c+1,h′)

22: return

c = k ∧ ⊲ quorum condition 1, Sect. 4.2.3

CHECKSIGNATURE(B.quorum.[0].p, B) ∧
CHECKUPDATE(blocks[B.parent].state, B.payload)

A key difference to Nakamoto consensus is that the proof-

of-work solutions in the quorum are bound to the previous

block and not to the state update of the proposed block (see

line 18). This implements the separation of puzzle solutions

from block proposals and enables parallel puzzle solving (see

Sect. 2).

4.2.6 Proposing Nodes assume leadership whenever possi-

ble. If so, the procedure PROPOSEIFLEADER (Listing 4.4)

obtains a state update from the application, integrates it into a

new valid block, and shares it with the other nodes.

Listing 4.4 Block Proposals

23: procedure PROPOSEIFLEADER(r)

24: if ∃ valid k-quorum Q⊂ blocks[r].votes where Q[0].p = me then

25: B.parent← r

26: B.quorum← Q

27: B.payload← PROPOSEUPDATE(blocks[r].state)

28: B.signature← SIGN((B.parent, B.quorum, B.payload), secret)

29: STORE(B)

30: schedule 〈 send | block B 〉
31: return true

32: else return false

4.2.7 Commit Proposals become final after the three-phase

commit. Each subsequent block carries a quorum that com-

pletes one phase, like in HotStuff (see Sect. 2). Consequently,

the most recent application state can be retrieved from the

local block store as shown in Listing 4.5.
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Listing 4.5 Reading Application State

33: procedure READSTATE

34: return blocks[head].parent.parent.parent.state

4.2.8 Conflict Resolution The commit becomes effective

after three blocks, but we have to consider conflicting block

proposals at the uncommitted frontier. For example, when

more than k votes exist, the leader election is not unique.

Moreover, a malicious leader can send different proposals

without solving additional proof-of-work puzzles. Nodes re-

solve such conflicts based on the progress towards the next

quorum.

4.2.9 Block Preference When learning of a new block or

vote, nodes update their preferred chain according to a modi-

fied version of Nakamoto’s longest chain rule. HotPoW adapts

it to include information on quorum progress (Sect. 4.2.8) and

reject changes to already committed state (Sect. 4.2.7). Pro-

cedure UPDATEHEAD (Listing 4.6) takes a candidate block

reference and updates the preferred chain if necessary.

Listing 4.6 Block Preference

35: procedure UPDATEHEAD(r)

36: H← blocks[head]

37: R← blocks[r]

38: d← R.height−H.height

39: if d > 0∨ (d = 0 ∧ |R.votes|> |H.votes|) then

40: while d > 0 do (R, d)← (R.parent, d−1)

41: if H.parent.parent.parent.block = R.parent.parent.parent.block then

42: head← r

4.2.10 Main Program Listing 4.7 shows the set of event

handlers that tie everything together and define a HotPoW

node. The execution is initiated by scheduling the 〈 init 〉
event. The listing shows how nodes assume leadership upon

completing a suitable quorum with an ATV of their own

(line 50), or votes received from others, either directly (line 54)

or as part of a block proposal (line 58). In the last case, if

more than k votes exist, it can happen that a node replaces

the leader. It proposes a block of its own by reusing votes

contained in the received proposal. This is possible because

votes in HotPoW reference the previous block and not the

current proposal. The possibility of reusing votes reduces

wasted work compared to orphans in Nakamoto consensus, a

problem that has been studied separately [61]. It also provides

robustness against leader failure (see Sect. 5.1.3).

Line 48 handles ATVs. If the node cannot lead a quorum,

it broadcasts the vote. The last missing part is how ATVs can

be scheduled, which we discuss next.

Listing 4.7 The HotPoW Protocol

43: upon 〈 init 〉 do

44: me, secret← GENERATEKEYPAIR( )

45: head← genesis ⊲ hard-coded magic value

46: blocks[genesis].state← S0 ⊲ application’s initial state

47: blocks[genesis].height← 0

48: upon 〈 atv | s 〉 do

49: COLLECT(head, me, s)

50: if not PROPOSEIFLEADER(head) then

51: schedule 〈 send | vote (head, me, s) 〉
52: upon 〈 receive | vote (r, p,s) 〉 do ⊲ sent by other node in line 51

53: COLLECT(r, p,s)

54: PROPOSEIFLEADER(r)

55: upon 〈 receive | block B 〉 do ⊲ sent by other node in line 30 (Sect. 4.2.6)

56: for all (p,s) in B.quorum do

57: COLLECT(B.parent, p, s)

58: PROPOSEIFLEADER(B.parent)

59: if VALIDBLOCK(B) then STORE(B)

4.2.11 Work Agents can participate in the quorum finding

process by computing ATVs on their nodes. For completeness,

Listing 4.8 shows the trial-and-error algorithm which sched-

ules solutions suitable for votes (≤ tv). Alternatively, agents

can search ATVs with the help of other machines, possibly in

parallel and using specialized hardware. Figure 6 reflects this

by splitting the lower layer in network and work.

Listing 4.8 Puzzle Solving

60: procedure WORK

61: draw random number n

62: if Hpow(head, me, n)≤ tv then

63: schedule 〈 atv | n 〉
64: WORK

Figure A.1 in the appendix visualizes an execution of Hot-

PoW by correct nodes and compares it to Nakamoto consen-

sus.

4.3 Incentives

It is possible to motivate participation in HotPoW by reward-

ing puzzle solutions. This requires some kind of virtual asset

that (at least partly) fulfills the functions of money [34, p. 1]

and can be transferred to a vote’s public key. Claiming the

reward for (r, p,s) depends on the corresponding secret key.

HotPoW could adopt Bobtails’s constant reward per vote

[9]. Rewarding votes instead of blocks would ensure inclu-

siveness without compromising security (see Sect. 2). Votes

occur k times more frequently than blocks. HotPoW’s min-

ing income would thus be less volatile than in Nakamoto

consensus. This reduces the pressure to form mining pools.

However, it is not trivial to establish if constant rewards are

incentive compatible because the utility of the reward outside

the system may affect the willingness to participate in the sys-

tem and thereby make λ endogenous [18, 56]. This implies

that rewards must be treated jointly with the assumptions pre-

venting the failure modes PoW-1 and PoW-2. We are unaware

of protocol analyses that solve this problem convincingly.
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Figure 7: Schematic overview of the discrete event simulation.

On a more general note, designing protocols like economic

mechanisms by incentivizing desired behavior sounds attrac-

tive because there is some hope that the assumption of honest

nodes can be replaced by a somewhat weaker assumption of

rational agents [26, 31]. In this spirit, Badertscher et al. [6]

present positive results for Bitcoin in a discrete round exe-

cution model and under assumption of a constant exchange

rate. However, many roadblocks remain. Agents’ actions are

not fully observable (e. g., information withholding) and pref-

erence orders are not fully knowable, hence rationality is

not precisely defined. Side-payments (bribes), which cannot

be ruled out, pose an insurmountable challenge for mecha-

nism design [10, 12, 37]. For distributed logs, which work

inherently sequential, this approach may even be thwarted

by negative results on the existence of unique equilibria in

repeated games [24]. For these reasons, we skip the mecha-

nism design aspects and limit our contribution to transferring

Byzantine consensus to proof-of-work scenarios. In other

words, HotPoW supports incentives for inclusiveness, but its

security intentionally does not rely on incentives.

5 Evaluation

We implement HotPoW in OCaml and evaluate it in a network

of 1000 nodes using a discrete event simulation. We average

over 100 independent executions of the first 500 blocks. All

results are reproducible with the code provided online.4

The simulation maintains state for all simulated nodes sep-

arately. Events are stored in a priority queue, with keys rep-

resenting points in time. Events are scheduled by inserting

them into the queue. There are three types of simulation

events: 〈 atv 〉, 〈 broadcast 〉 and 〈 deliver 〉. The simulation’s

main loop takes the first event from the queue and handles it

by interacting with the nodes in the following way (also see

Fig. 7).

4https://github.com/pkel/hotpow/tree/arxiv_v3
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Figure 8: The effect of latency on the time to commit. The

latency is stated relative to the optimistic quorum time (in

small print for a quorum time of 10’). The horizontal lines

show a realistic scenario (10s for blocks, 100ms for votes).

Proof-of-Work When taking an 〈 atv 〉 event from the

queue, the simulation randomly and independently assigns

an ATV to a node. The simulation executes the assignment

by invoking the 〈 atv 〉 event handler on the receiving node.

Then, it schedules the next ATV with a random, exponentially

distributed time delta. This simulates a proof-of-work pro-

cess according to Def. 1. The simulation does not perform

actual work by setting the vote threshold tv to the maximum;

meaning puzzles are trivial to solve.

Broadcast Nodes invoke the broadcast logic by scheduling

local 〈 send | . 〉 events. The simulation translates them to

global 〈 broadcast | . 〉 events. For each broadcast event, the

simulation schedules 〈 deliver | . 〉 events for each node except

the sender. During this step, the simulation injects latency

and simulates churn and leader failure. Delivery events are

handled by invoking the 〈 receive | . 〉 handler on the receiving

node.

5.1 Robustness

We evaluate the robustness in terms of latency, churn, and

leader failure. In all simulation runs we check for inconsistent

committed state, which did not occur.

5.1.1 Latency We model the effect of latency by injecting

a random time delay between broadcast send and message de-

livery. We draw delays from an exponential distribution with

fixed expectation, independently for each node and delivery.

Latency causes temporal state inconsistencies. In these peri-

ods, nodes spend their ATVs on extending superseded blocks,

or even produce temporal forks. We observe that largely inde-

pendent of the quorum size k, expected latencies below 1 %

of the expected block time (Bitcoin: 6 seconds) have marginal

impact, while latencies in the order of 10 % of the expected

block time (Bitcoin: 60 seconds) delay the commit by about

20 %. Figure 8 visualizes these results.

8

https://github.com/pkel/hotpow/tree/arxiv_v3


1.0

1.2

1.4

1.6

1.8

2.0

ti
m

e
to

co
m

m
it

0 0.1 0.4 0.5
churn ratio

k

2

8

32

128

Figure 9: The effect of churn on the time to commit.

Empirical measurements [15, 16, 29] suggest that the prop-

agation time of Bitcoin blocks (≈ 500 KB) is about 9 seconds

on the Internet. If we take this as an upper bound, we can ar-

gue that HotPoW tolerates practical latencies. Moreover, most

of HotPoW’s messages are votes. They are multiple orders

of magnitude smaller (72 B; see Sect. 5.3), fit into a single

packet, and are much easier to verify than Bitcoin blocks. Re-

sults of a simulation with different latencies for blocks (10s)

and votes (100ms) suggest that HotPoW can run at Internet

scale with lower expected block time than 10 minutes.

5.1.2 Churn We simulate churn by muting a fraction (churn

ratio) of random nodes for 10 times the expected block time.

Muted nodes can receive ATVs but do not send or receive

messages. Accordingly, the ATVs assigned to muted nodes

represent lost work. We expect that the time to commit is

inversely proportional to the churn ratio: if 50 % of the nodes

are muted, the time to commit is twice as long, independent

of the quorum size. Figure 9 supports this claim.

5.1.3 Leader Failure Leaders may fail to propose blocks.

We model such failures by dropping block proposals randomly

with constant probability (leader failure rate).

In Nakamoto consensus, lost proposals imply a full block

worth of wasted work. HotPoW can reuse votes for different

proposals. Honest nodes reveal at most one new vote with

their proposal. Accordingly, a lost proposal wastes at most

the work of one vote. Therefore, with increasing quorum size

the robustness to leader failure should improve. The results in

Figure 10 (with realistic 10s/100ms latency) and Figure A.2

(without latency to isolate effects) support this claim. For

perspective, the right end of the graph simulates a situation

where an attacker can monitor all nodes’ network traffic and

disconnect nodes at discretion with 50 % success probability.

Still, for large quorum sizes the time to commit is not longer

than under the extreme latencies discussed in Section 5.1.1.

The robustness against churn and leader failure emerges

from HotPoW’s novel approach to form short-lived commit-

tees from ephemeral identities. This maintains liveness even
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Figure 10: The effect of leader failure on the time to commit.

under the threat of powerful network-level attacks. We move

on to the discussion of attacks on the protocol layer.

5.2 Security

The security evaluation draws on the framework by Zhang

and Preneel [66]. It distinguishes the security aspects proof-

of-work blockchains should fulfill: chain quality, incentive

compatibility, subversion gain, and censorship susceptibility.

The authors suggest Markov Decision Processes (MDP) as

method and apply it to several variants of Nakamoto consen-

sus. However, state explosion prevented them from modeling

Bobtail,5 because it ranks proof-of-work solutions by magni-

tude. Since HotPoW adopts this ranking for the leader elec-

tion (Sect. 4.2.4), it does not seem readily amenable to MDPs,

either. We thus resort to informal reasoning and simulation.

Following the convention in the literature, we assume two

agents. Let λ be the total compute power. The attacker has α ·λ
compute power, the honest agent controls the rest. The honest

agent operates correct nodes, while the attacker operates a

single node that may deviate from the protocol specification.

5.2.1 Subversion Gain The canonical example for subver-

sion gain in cryptocurrencies is double spending: the attacker

wants at least one of the honest nodes (the merchant) to act on

inconsistent state. HotPoW supports commits, hence we nei-

ther need to consider the possibility of history rewriting nor

the double spending of uncommitted transactions.6 Nakamoto

consensus suffers from these problems [2, 12, 29, 33, 38].

The only remaining strategy is splitting the network so

that the recipients of at least two different double-spend trans-

actions commit to different states. This loss of consistency

would materialize in permanent forks that require out-of-band

resolutions (triggered by an else-branch after code line 42).

5Zhang and Preneel [66] were aware of Bobtail and chose not to model it.

This is confirmed in private communication with the authors of Bobtail [9].
6Sound applications on a system with finality wait until the commit.

HotPoW can be parametrized to acceptable commit times for economic

exchanges between humans. (High-frequency trading needs other architec-

tures.)
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In order to understand how HotPoW ensures consistency, it

is instructive to recall the block preference rule in Sect. 4.2.9.

Assume counterfactually that nodes never update their value

according to received votes. Then, an attacker who becomes

the leader could send different proposals to each node. This

would fragment the honest nodes’ compute power and give

the attacker time to form six quorums, three per conflicting

state. The probability of the attacker becoming leader is at

least α in each round. This would be a catastrophic attack.

The actual block preference rule selects the value with

the highest progress among all known proposals. Therefore,

as soon as the first vote is received from an honest node,

all honest nodes converge to a single value. As a result, the

attacker would have to form six complete quorums in the time

the honest nodes get assigned a single ATV and broadcast the

corresponding vote. Since 6k
α ≫ 1

1−α , such an attack becomes

infeasible for large quorum sizes k and α < 1/2.

5.2.2 Censoring In the censoring scenario, the attacker

wants to control the values on which consensus is achieved

for some time. This means he has to be elected as leader in

multiple (m) consecutive blocks.

We start with the probability of an attacker becoming the

leader in a single round. Without deviating from the protocol,

he leads with probability α. This means he could successfully

censor HotPoW for m consecutive blocks with probability αm.

However, naively following the protocol is not the best

censoring strategy. Taking inspiration from the work on selfish

mining [22, 40, 59], we argue that an attacker can do better

by withholding information. A selfish miner in Nakamoto

consensus withholds complete blocks, such that other miners

work on an irrelevant part of the chain. HotPoW has a more

granular type of information: an attacker might withhold his

votes. A censoring attacker would release his votes only when

the release implies leadership. In practice, this means that

a censoring attacker does not share votes, he only proposes

blocks. Using this strategy, the attacker can delay the next

quorum until the honest nodes can form one without the

attacker’s votes. This time window increases the attacker’s

odds of becoming the leader.

We implement this censor strategy and instantiate it in

a special attacker node of the simulation environment (see

Fig. 7). We bias the assignment of ATVs towards this node

such that it posesses computational power α. We routinely

check for forks, but do not find any. We count how many of

the committed blocks are proposed by the attacker in order

to estimate the probability of leadership per round. Figure 11

shows this estimate as a function of the quorum size for

different attacker strengths α. Using the described withhold-

ing strategy, an α = 1/3 attacker contributes roughly 42 %

(α = 1/2: 64 %) of the blocks. For comparison, the upper

bound for block withholding strategies for the same attacker

on Nakamoto consensus is 50 % (α = 1/2: 100 %) [59].

We additionally validate the results on the censor strategy
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using an independent Monte Carlo (MC) simulation. (See

Appendix B for details.) As depicted in Figure 11, the MC

analysis confirms the network simulation.

5.2.3 Chain Quality and Incentive Compatibility The

prevalent strategy for increasing the own share of blocks and

rewards is selfish mining [22, 50, 59]. This attack is inher-

ently connected with incentives. Its basic idea is to withhold

and strategically release blocks in order to create an informa-

tion asymmetry that allows to reap a disproportional amount

of rewards for the invested share of work. This idea is not

directly transferrable from Nakamoto consensus to HotPoW

for three reasons. First, the finality after three blocks substan-

tially limits the horizon of the selfish miner. Second, block

proposals are less valuable. They are not significant sources

of reward. Third, block proposals are less critical. In fact,

block withholding reduces to the situation of leader failure.

Since votes can be reused, honest nodes can replace missing

proposals very fast (see Section 5.1.3). This makes proposals

less rare events than in Nakamoto consensus, limiting the

strategic advantage of withholding them.

However, as we have argued in Section 5.2.2, it is a valid

strategy to withhold votes. Therefore, we analyze the effect of

vote withholding on the distribution of rewards, assuming a

constant reward per committed vote, like in Bobtail [9]. The

naive strategy yields a share of α of the votes. The attacker’s

goal is to maximize the number of votes he contributes to

each quorum. Since only the leader can decide which votes

are included in a proposed quorum, the first step of optimal

vote withholding is to increase the odds of becoming the

leader. This, in turn, can be achieved by withholding votes!

The circularity indicates that the attack can be approximated

with the censoring strategy discussed in Section 5.2.2.

Figure 12 shows simulation results on how the strategy, α,

and the quorum size affect the share of attacker votes com-
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mitted to the chain. Interestingly, the censor receives fewer

rewards than honest nodes and naive attackers, indicating a

dilemma between paying for becoming the leader and cap-

italizing the power of leadership. The tradeoff is visible by

comparing Figures 11 and 12. A similar tradeoff appears

for the so-called “proof withholding” strategy in Bobtail [9],

which resembles the censoring strategy in HotPoW.

Again, we compare the protocol implementation in the

network simulation with the idealized MC model described

in Appendix B.

5.3 Overhead

Nakamoto consensus requires one message broadcast per

block, namely the block itself, independent of the number

of participating nodes. HotPoW adds k message broadcasts

per block—one for each vote. Votes are much smaller than

blocks. Under the conservative assumptions of 256 bits for

block reference and public key, and 64 bits for the puzzle

solution, a vote is 72 B.7

The number of messages is constant in the number of nodes,

like in Bitcoin. However, block headers grow. HotPoW must

store the complete quorum with k puzzle solutions. This over-

head matters because the header is replicated in all nodes that

want to verify the blockchain in the future.

Assuming the same vote size and the most robust case an-

alyzed (k = 256), the storage overhead is about 10 kB per

block. This is less than 1 % of Bitcoin’s average block size

in 2019. With this choice of k, falsely accepting a quorum

as unique is much less likely than guessing a 128-bit key in

one attempt. Table A.1 (in the appendix) shows the storage

overhead per block and the associated probability of ambi-

guity at expected optimistic quorum time (Corollary 2) for

7Bitcoin shortens public keys to 160 bits and uses solutions of 32 bits. Its

blocks are in the order of 1 MB.

Table 1: A comparison of related distributed log protocols.
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- network X X

- committee X
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- BTP X X

- BTI X X X

sidechain X X

finality X X X X X

(X): Bitcoin and Bitcoin-NG use single-node committees.

different choices of k. We argue that the benefits of the pro-

tocol outweigh its storage costs and leave the exploration of

compression techniques to future work.

6 Discussion

6.1 Relation to Other Distributed Logs

New distributed log protocols are proposed almost every

month. We do not claim to know all of them and we do not

attempt to provide a complete map of the design space, since

other researchers have specialized on this task [7, 13]. Instead,

we compare HotPoW to some of its closest relatives along

selected dimensions (see Table 1).

6.1.1 Number of Nodes Early BFT protocols were de-

signed for a small number of nodes. PBFT [14], for example,

is proven secure under the Byzantine assumptions BFT-1 and

BFT-2. It requires multiple rounds of voting to reach con-

sensus on a single value. The communication complexity of

O(n2) renders it impractical for more than a dozen nodes n.

HotStuff [65] ensures safety under the same assumptions,

but increases the rate of confirmed values to one per round

of voting. Its key idea is to pipeline the commit phases of

iterative consensus (recall Fig. 3). Moreover, it reduces com-

munication complexity to O(n) by routing all communication

through a leader. These two changes make HotStuff practi-

cal for larger networks. However, all correct nodes actively

participate (send messages) for each block.

6.1.2 Committee Protocols designed for even larger scale

reduce communication complexity further by electing com-

mittees. Only committee members participate actively. All
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Figure 13: Resources can be bound to concrete proposals or

to identifiers, which are later used to sign proposals.

other nodes wait until they become part of a committee.

In Nakamoto consensus, write-access to the ledger is con-

trolled by a proof-of-work puzzle. In each round, one node –

the finder of the block – broadcasts a message. Consequently,

successful miners can be interpreted as single-node commit-

tees. In Bobtail [9] and HotPoW, multiple proof-of-work puz-

zles are solved per block. Consequently the committee size

is greater than one. The committee approach is also followed

by proof-of-stake protocols. Here, committee membership is

tied to the possession of transferable digital assets (stake).

6.1.3 Permissioned As stated earlier (Sect. 3), assump-

tion BFT-1 can only be satisfied by restricting access to the

network based on identities assigned by an external identity

provider or gatekeeper. Consequently, protocols relying on

this assumption are permissioned on the network layer.

Proof-of-stake internalizes the gatekeeping functionality by

restricting access to the committee based on the distribution

of stake. While participating as a node is possible without

permission, access to the committee is still permissioned.

In proof-of-work systems any agent can join and leave

the network and has a (fair) chance of becoming committee

member without obtaining permission from a gatekeeper.8

6.1.4 Resource Binding Proof-of-work can be seen as a

commitment of resources to a value. Typically, these values

are chosen locally on each node. Freshness is guaranteed

by including a reference to recent puzzle solutions in the

value. We distinguish between resources bound to a proposal

(BTP) for an upcoming state update and resources bound to

an identifier (BTI) used for entering the committee.

Nakamoto consensus uses BTP. Nodes form a proposal for

the next block locally and then start to solve a proof-of-work

for this proposal. If they are successful in finding a puzzle

8We ignore the role of the supply chain for puzzle solving equipment.

solution, they share their proposal. This process is depicted

in the upper half of Figure 13.

Bitcoin-NG [23] innovated by translating the concept of

leader election from the BFT literature (e. g., [20, 28, 51]) to

Nakamoto consensus. The miner of a block (elected leader)

becomes responsible for appending multiple consecutive (mi-

cro) blocks until the next leader emerges with the next mined

block. In our framework, Bitcoin-NG adds throughput by

switching from BTP to BTI in Nakamoto consensus. A more

elaborate BTI protocol is Byzcoin [41]. It forms a committee

over the last k successful miners. This rolling committee is

then responsible for appending micro blocks. Byzcoin uses

PBFT to reach final consensus within each committee, thereby

shifting control over the micro blocks from a single node

(Bitcoin-NG) to multiple nodes.

HotPoW is a BTI protocol: nodes bind resources to identi-

fiers by mining votes. If they happen to lead when the quorum

is complete, they sign a block proposal with their secret key.

The lower half of Figure 13 shows this order of events.

Bobtail extends HotPoW by binding a preliminary transac-

tion list into the proof-of-work solution of each vote.9 This

BTP aspect of Bobtail adds significant complexity to the vot-

ing logic in order to prevent the reuse of votes for different

competing proposals. As described in Section 5, HotPoW

makes the reuse of votes a key feature.

6.1.5 Sidechain The sequences of micro blocks in Bitcoin-

NG, Byzcoin, and also Thunderella [54] are often referred to

as sidechains. Sidechains can serve several purposes, such as

increasing throughput (Bitcoin-NG) or adding finality (Byz-

coin). However, since different mechanisms are used to ad-

vance different chains, synchronization is a major problem.

Bitcoin-NG tackles it with incentives, Thunderella focuses on

an optimistic case, and Byzcoin leaves open which chain has

priority. Sidechains often involve high protocol complexity

because different consensus mechanisms are stacked onto

each other: the protocols require a distributed log in order to

provide a distributed log (with different properties). By con-

trast, HotPoW provides an improved distributed log directly

from a broadcast network and proof-of-work.

6.1.6 Finality The lack of finality in Nakamoto consensus

exposes it to many attacks [4, 10, 12, 29]. So far, according to

conventional wisdom, eventual consistency has been accepted

as the price of a truly permissionless system. Byzcoin chal-

lenged this view with a stacked solution involving sidechains.

HotPoW achieves the same at lower protocol complexity us-

ing proof-of-work quorums. Their stochastic uniqueness al-

lows us to transfer the commit process from the permissioned

world to the permissionless.

9Since Bobtail inspired HotPoW, a better frame is to see HotPoW as

simplification of Bobtail rather than Bobtail as an extension to HotPoW.
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6.2 Other Related Protocols

Not included in Table 1 are protocol proposals that replace the

linear data structure of the distributed log with more general

directed acyclic graphs (DAGs) [61, 62]. This promises higher

scalability and faster first confirmation in latent networks at

the cost of additional complexity on the application layer,

which cannot rely on the total order and uniqueness of state

updates anymore. Also Fruitchain [52] can be interpreted as

a DAG: it recognizes solutions to hard and easy puzzles but

hides the DAG’s complexity from the application layer by not

allowing ‘fruits’ to carry state updates.

An even more radical approach is to drop the distributed log

completely and implement a digital asset directly on a secure

(source-ordered) broadcast without consensus [32]. However,

this approach restricts the versatility of the application layer.

For example, arbitrary smart contract logic is not supported.

6.3 Limitations and Future Work

We have presented a protocol that achieves finality in a per-

missionless setting under axiomatic exclusion of the failure

modes PoW-1 and PoW-2, and the acceptance of a negligible

failure probability. The assumption on PoW-1 and PoW-2 are

also made for security proofs of Nakamoto consensus [27, 55].

Nevertheless, it is worth discussing their suitability.

Excluding PoW-1 corresponds to assuming a fixed,

network-wide compute power λ. But agents can add and

remove nodes at their willing. Even if the number of nodes

is fixed, the computational power of each node is not. We

observe in practice that a control loop, known as difficulty

adjustment (DA), can compensate changes of λ up to a certain

degree. But ample literature shows that the deployed DA algo-

rithms are not optimal [25, 36, 42, 47], especially in case of

sudden changes of λ. We argue that proof-of-work quorums

can support more precise difficulty adjustment algorithms. A

higher quorum size implies more votes and hence more data

points to inform the algorithm about changes of λ.

The same effect can be exploited for detecting network-

level attacks, such as eclipse and splits, more accurately. (Ap-

pendix C provides additional details.) This is relevant in the

context of the CAP theorem [30], which tells us that every

distributed system has to sacrifice one out of consistency,

availability and partition tolerance. HotPoW, as presented,

favors availability over consistency. It does not implement

a mechanism for detecting network splits, even though it is

possible at high confidence for big quorum sizes. The trade-

off could be changed in favor of consistency. If a split is

detected, the protocol withholds commits (and may notify the

application layer in order to trigger out-of-band resolutions).

The second failure mode, PoW-2, can be catastrophic and

is hard to rule out. We are not aware of any argument that

bounds α to a constant below 50 % for any proof-of-work

system. In fact, >50 % attacks have been mounted against

smaller instances of Nakamoto consensus in practice [21].

Our network simulation in Section 5 models exponentially

distributed message propagation times. This distribution puts

the system under pressure, but it is not very realistic. Future

work might put the simulation on a more structured network

topology. However, since the literature reports a significant

discrepancy between observed topologies and what cryptocur-

rencies are designed for [17, 46], it is not obvious what an

appropriate topology would look like.

Similarly, we leave unexplored how to disseminate Hot-

PoW’s smaller vote messages efficiently. Votes easily fit into

single Internet packets and their verification requires only one

hash evaluation. It might be possible to improve vote propaga-

tion times using UDP-based structured broadcast [58] instead

of the gossip broadcast used in many cryptocurrencies.

Finally, we refrain from designing an incentive mechanism

for HotPoW for the reasons stated in Section 4.3. A principled

approach would be to explore reward-optimizing strategies

(combined withholding of votes and blocks) automatically

using Markov Decision Processes [59, 66] or even more so-

phisticated Reinforcement Learning techniques [35].

7 Conclusion

We understand HotPoW as a positive example to support our

claim that it is possible to build permissionless distributed

logs with finality directly from proof-of-work. The claim is

tentatively supported (with analysis and simulations) until

HotPoW is broken. We invite the community to prove our

claim wrong, and provide running code online to facilitate

this task.10 It is not safe to use this code in systems dealing

with real values.

Regardless of whether our claim is true or false, the iden-

tified conflict between inclusiveness and security is instruc-

tive, and the associated theory of quorums on stochastic pro-

cesses may find applications elsewhere. Since it comprises

Nakamoto consensus as a special case, it also contributes to a

better understanding of the role of proof-of-work in known

systems that “work in practice, but [so far] not in theory” [11].

If our claim holds, we have found a way to build permission-

less distributed logs from proof-of-work that can serve many

applications better than existing systems. However, proof-

of-work is a very wasteful way of establishing consensus. It

should be avoided whenever possible. Only if there is no al-

ternative to proof-of-work, HotPoW should be considered as

a replacement for Nakamoto consensus.
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A Proofs, Figures, and Visualizations

Lemma 1 The POA for the Poisson process Pλ is given by

poaPλ,k
(t) = 1− e−λt

2k−1

∑
i=0

(λt)i

i!
.

Proof. Pλ has the following properties [63, p. 389]:

1. Pr
[

Pλ(0) = 0
]

= 1,

2. Pλ(t)−Pλ(s)∼ Poisson(λ · (t− s)) for all s < t, and

3. for n ∈ N and 0 < t1 < · · · < tn, the family of random

variables

{Pλ(ti)−Pλ(ti−1) | 2≤ i≤ n}

is stochastically independent.

According to Definition 4,

poaPλ,k
(t) =Pr

[

Pλ(t)≥ 2k
]

(1)

=1−Pr
[

Pλ(t)≤ 2k−1
]

. (2)

By setting s = 0 in property 2 of the Poisson process and

using property 1, we conclude that Pλ(t)∼ Poisson(λt). By

evaluating the cumulative distribution function of the Poisson

distribution

FPoisson(n;λ′) = e−λ′
⌊n⌋
∑
i=0

λ′i

i!
(3)

for n = 2k−1 and λ′ = λt, we obtain the stated result.

Lemma 2 The optimistic k-quorum time for the Poisson

process is Erlang distributed with shape parameter k and rate

parameter λ, in short

TPλ,k ∼ Erlang(k,λ) .

Proof. The time between two consecutive count events of

Pλ is exponentially distributed with rate parameter λ. The

times between any two consecutive count events are stochas-

tically independent. The sum of k independent and identi-

cally distributed exponential random variables is Erlang dis-

tributed [63, p. 146] with shape parameter k and rate parame-

ter λ.

Theorem 1 For the Poisson process, the probability of am-

biguity at the expected quorum time is negligible in the quo-

rum size k.

Proof. Let

f (k) := poaPλ,k
(t̄λ,k) = 1− e−k

2k−1

∑
i=0

ki

i!
. (4)
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(a) In Bitcoin, puzzles are solved sequentially. Solutions are bound to block proposals, implying exponentially distributed block intervals.
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(b) In HotPoW, smaller puzzles are solved in parallel. One of the solutions is chosen as leader, the corresponding miner collects the quorum

(k = 8 votes) and proposes the next block. Thereby, HotPoW enables more regular block intervals and more frequent rewards for miners.


 puzzle solution

p leading puzzle solution

0 proposal

message

block arrival time

puzzle reference

(c) Symbols and their meaning.

Figure A.1: Simulated executions of Bitcoin and HotPoW on n = 7 nodes (y-axis) over time (x-axis).
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Our first observation is that f (k) can be expressed in terms of

the regularized incomplete Gamma function P(α,k). Accord-

ing to DLMF §8.4.E911,

f (k) = P(2k,k) . (5)

Following the definition of the regularized incomplete

Gamma function (see DLMF §8.2.E4), we obtain

f (k) =
γ(2k,k)

(2k−1)!
, (6)

with the incomplete Gamma function (see DLMF §8.2.E1)

γ(α,k) =
∫ k

0
tα−1e−tdt . (7)

We will prove the theorem by providing an (asymptotic) upper

bound for f (k) that decreases exponentially in k. Stirling’s

Approximation [57] provides a useful lower bound for the

factorial in the denominator of Equation 6:

n!≥
√

2πnn+ 1
2 e−n (8)

We proceed with an upper bound for the enumerator as fol-

lows. Let g(t) = t2k−1e−t be the function to integrate for

α = 2k. Like for integrals in general,

γ(2k,k) =
∫ k

0
g(t)dt ≤ k · max

t∈[0,k]
g(t) . (9)

The derivative of g is g′(t) = e−t(2k− t − 1)t2k−2. For t ∈
[0,k] the derivative g′ is greater than zero. Hence the function

g is monotonically increasing, the maximum is reached at the

end of the interval, and

γ(2k,k)≤ k2ke−k . (10)

Applying Approximations 8 and 10 to Equation 6, yields

f (k)≤ k2ke−k

√
2π(2k−1)2k− 1

2 e−2k+1
(11)

=

(

k
√

e

2k−1

)2k
√

2k−1

2πe2
(12)

Observe that

limsup
k→∞

(

k
√

e

2k−1

)2k

(√
e

2

)2k
= limsup

k→∞

(

2k

2k−1

)2k

= e < ∞ . (13)

Thus,

f (k) = O

(

ek

4k

√
k

)

. (14)
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Figure A.2: Pure effect of leader failure, i. e., without latency.

Supplement to Figure 10.

Table A.1: Storage overhead of HotPoW consensus.

quorum size probability of ambiguity block header

k at expected quorum time (bytes)

1 0.2642 72

2 0.1429 112

16 0.0003 672

64 1.2×10−12 2.6 k

256 4×10−45 10 k

Since
√

k < 1.25k for k > 1, we can conclude

f (k) = O

(

ek

4k
1.25k

)

(15)

= O
(

0.85k
)

. (16)

B Monte Carlo Simulation

We cross-check the implementation of the censor strategy and

its behavior in the network simulation (see Sect. 5.2.2) using

an independent Monte Carlo simulation. We model the for-

mation of individual quorums using an (Absorbing) Markov

Chain, but omit higher-level concepts such as blocks and their

chaining. The censor strategy is to generally withhold votes

until either the attacker can form a quorum as leader, or the

defender forms a quorum without any of the attacker’s (with-

held) votes. In a protocol execution, the first case (SUCCESS)

applies when the attacker proposes a block which the honest

nodes accept. The second case (FAIL) applies when the honest

nodes propose a block.

State representation and initialization We model the cur-

rent state as a triple (a,d, l), where a ∈N denotes the number

of (withheld) attacker votes, d ∈ N (for defender) denotes the
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a,d,⊤

a+1,d,⊤

a,d +1,⊥

a,d +1,⊤

α

(1−α)/(a+d +1)

(1−α) · (a+d)/(a+d +1)

attacker extends lead

defender obtains lead

following defender catches up

a,d,⊥

a,d +1,⊥

a+1,d,⊤

a+1,d,⊥

1−α

α/(a+d +1)

α · (a+d)/(a+d +1)

defender extends lead

attacker obtains lead

following attacker catches up

Figure B.1: Probabilistic state transitions in the Markov Chain model for the censor strategy.

number of votes of the honest nodes, and l ∈ {⊥,⊤} is true if

the attacker holds the currently smallest vote. The initial state

is (1,0,⊤) with probability α and (0,1,⊥) otherwise.

State transition Figure B.1 shows an annotated state tran-

sition diagram. If l =⊤, the next state is

(a+1,d, l) with probability α,

(a,d +1,⊥) with probability
1−α

a+d +1
, and

(a,d +1, l) otherwise.

If l =⊥, the next state is

(a,d +1, l) with probability 1−α,

(a+1,d,⊤) with probability
α

a+d +1
, and

(a+1,d, l) otherwise.

Termination If l∧a+d ≥ k, the simulation terminates in

SUCCESS. If ¬l∧d ≥ k, it terminates in FAIL. The simulation

continues until one of these conditions is true.

Simulation We run the model 1 000 000 times for each com-

binations of α ∈
{

1
50
, 1

10
, 1

5
, 1

3
, 1

2

}

and k ∈ {1,2,4, . . . ,256}.
Figure 11 shows the fraction of cases where the simulation

Table C.1: Time until eclipse can be detected at confidence

p = 0.001 (relative to the expected block time).

quorum size 1 2 4 8 16 32 64 128 256

time 6.91 3.45 1.73 0.86 0.43 0.22 0.11 0.05 0.03

terminates in SUCCESS. Figure 12 shows the average number

of attacker votes for the runs that end in SUCCESS.

C Detecting Attacks

Each vote is linked to one ATV. By assumption (Sect. 3),

the time between two consecutive ATVs is exponentially

distributed with rate λ. In an honest network, a node regularly

receives votes (and own ATVs). A node can test the hypothesis

of being eclipsed based on the arrival of votes. Table C.1

shows after how much time (relative to the block time) of not

receiving a single vote a node can rule out a natural course of

events with confidence p = 0.001.

Observe that larger quorums sizes increase the detectability

of eclipse attacks. For quorum sizes greater than 8, eclipse

attacks can be detected with confidence within a single ex-

pected block time. For plain Nakamoto consensus (k = 1),

an equally powerful test requires an observation window of

almost 7 times the expected block time.
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